Climate Change: What's ahead for the Southwest?

Goal of talk:

review evidence for "global warming" and what's at stake

- •what's the consensus among climate scientists
- •what's new focus on the Arctic and implications
- •what's new focus on the Southwest U.S. and....

the drought!.

Andrew C. Comrie

Professor of Geography & Regional Development Professor of Atmospheric Sciences

Acknowledgements: Jonathan Overpeck Shoshana Mayden

Pop-quiz!

For 10 points, answer the following question...

Is the "greenhouse effect" real, and how do we know?

The Intergovernmental Panel on Climate Change (IPCC) Climate Change 2001:

Hundreds of authors and hundreds of reviewers, from most countries of the world

All climate scientists!

"globally averaged surface temperature projected to increase by 1.4 to 5.8°C (2.5 to 10.4°F) over the period 1990 to 2100"

Climate Warming in the Arctic Significant and Accelerating

- Warming greatest on planet: as predicted by IPCC
- Arctic Sea Ice Pack: thinned by 40% in last 50 years
- Summertime Arctic Sea lce: melting is accelerating
- Greenland Ice Sheet: ditto, 16% increase in melt area between 1979 and 2002

(Arctic Impacts of Global Warming, Cambridge U. Press, 2004)

So, who's likely to feel BIG impacts first?

East and Gulf Coasts, and especially Florida?

So, who's likely to feel BIG impacts first?

East and Gulf Coasts, and especially Florida?

Maybe not...

For **Southwest**? Best bet is that we'll see the following by the late 21st century: temperature: up to 14°F (or even more!*) warming, more probably in winter than summer

precipitation: flip a coin for changes in the mean, (winter increase more likely) plus:

- snow runoff season will be significantly shorter
- evaporation will be significantly higher in all seasons
- droughts will be more likely Accelerated hydrologic cycle 1
 - floods will be more likely

Conservative estimates of climate change impact on the Colorado River System by

the end of 21st century

Christensen et al., Climatic Change (2004)

- Annual runoff down by over 15%
- Basin storage down by 40%
- Power output decreased to 45-56% of historical average
- Central Arizona Project (CAP) hit hard

Conclusions - the science

- decades-long drought possible even w/o anthropogenic climate change, especially during warmer periods
- given continued greenhouse gas emissions, future climate change will be substantial and persistent:
 - substantial warming a sure bet
 - substantial increase in evaporation a sure bet
 - decreased snowpack and snow season likely
 - some increases in precipitation (esp. winter) possible, but best bet on less than in wet years of 20th century
 - likely increase in drought frequency and duration
 - current drought (hot and dry) should be considered a harbinger of things to come, unless we act soon

Conclusions - what to do?

- ways to ensure best chance for continued economic growth, quality of life, and healthy ecosystems include:
 - 1) ADAPT SMARTLY *implement policy to reduce climate* vulnerability (e.g., to high temperatures, water shortages and climatic extremes)
 - 2) MITIGATE DANGEROUS CHANGE lead efforts to curb climate change West will likely be the first part of the U.S. to suffer major impacts

NOTE: both are "**no regrets strategies**" that have serious benefits beyond climate change (e.g., energy independence, improved air quality, and new economic growth engines)

"The end of the **stone age** did not end for lack of stone, and the **oil age** will end long before the world runs out of Oil" (Sheikh Yamani - former Oil Minister of Saudi Arabia)

What's needed:

- Increased focus on no-regrets energy and water conservation measures
- 2) A **Manhattan Project**-like effort to develop the energy sources of the future
- Need to **start soon** to avoid big impacts

Pop-quiz #2

For another 10 points, answer the following question...

What is the current TOTAL U.S. electricity generation capacity?

~1 million megawatts (MW)

76% fossil fuel 11% hydro 11% nuclear 2% geothermal, solar, & wind

Source: US Department of Energy http://www.eia.doe.gov/emeu/cabs/usa.html

Solar energy generating potential in SW U.S.

Table 1. Results of satellite/GIS analysis showing area of land and associated power capacity for seven states in U.S. Southwest.

STATE	AVAILABLE AREA (MI²)	CAPACITY (MW)*
Arizona	19,300	2,467,700
California	6,900	877,200
Colorado	2,100	271,900
Vevada	5,600	715,400
New Mexico	15,200	1,940,000
Texas	1,200	148,700
Utah	3,600	456,100
Total	53,900	6,877,000

*CSP power plants require about 5 acres of land area per megawatt of installed capacity. Solar generation can be estimated by assuming an average annual solar capacity factor of 25%-50%, depending on the degree of thermal storage used for a plant.

Mehos and Perez, 2005 Imaging Notes

Thank You!

comrie@arizona.edu

